Euclidean Proofs of Dirichlet’s Theorem

نویسنده

  • KEITH CONRAD
چکیده

Euclid’s proof of the infinitude of the primes is a paragon of simplicity: given a finite list of primes, multiply them together and add one. The resulting number, say N , is not divisible by any prime on the list, so any prime factor of N is a new prime. Some special cases of Dirichlet’s theorem admit a simple proof following Euclid’s model, such as the case of 1 mod 4 or 5 mod 6. (We mean by ‘Dirichlet’s theorem’ only the assertion that a congruence class contains infinitely many primes, not the stronger assertion about the density of such primes.) One property which these Euclidean proofs of special cases of Dirichlet’s theorem have in common is that they use a polynomial, varying from one case to the next, whose integer values have restricted prime factors. Specifically, a Euclidean proof of Dirichlet’s theorem for a mod m involves, at the very least, the construction of a nonconstant polynomial h(T ) ∈ Z[T ] for which any prime factor p of any integer h(n) satisfies, with finitely many exceptions, either p ≡ 1 mod m or p ≡ a mod m, and infinitely many primes of the latter type occur. Here are some cases where Euclidean proofs of Dirichlet’s theorem exist.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P. Pollack∗ HYPOTHESIS H AND AN IMPOSSIBILITY THEOREM OF RAM MURTY

Dirichlet’s 1837 theorem that every coprime arithmetic progression a mod m contains infinitely many primes is often alluded to in elementary number theory courses but usually proved only in special cases (e.g., when m = 3 or m = 4), where the proofs parallel Euclid’s argument for the existence of infinitely many primes. It is natural to wonder whether Dirichlet’s theorem in its entirety can be ...

متن کامل

Dirichlet Prime Number Theorem

In number theory, the prime number theory describes the asymptotic distribution of prime numbers. We all know that there are infinitely many primes,but how are they distributed? Dirichlet’s theorem states that for any two positive coprime integers a and d, there are infinitely many primes which are congruent to a modulo d. A stronger form of Dirichlet’s theorem states that the sum of the recipr...

متن کامل

Dirichlet’s Theorem on Diophantine Approximation and Homogeneous Flows

Given an m×n real matrix Y , an unbounded set T of parameters t = (t1, . . . , tm+n) ∈ R m+n + with ∑m i=1 ti = ∑n j=1 tm+j and 0 < ε ≤ 1, we say that Dirichlet’s Theorem can be ε-improved for Y along T if for every sufficiently large t ∈ T there are nonzero q ∈ Z and p ∈ Z such that { |Yiq− pi| < εe −ti , i = 1, . . . ,m |qj | < εe tm+j , j = 1, . . . , n (here Y1, . . . , Ym are rows of Y ). ...

متن کامل

Dirichlet’s Theorem about Primes in Arithmetic Progressions

Dirichlet’s theorem states that if q and l are two relatively prime positive integers, there are infinitely many primes of the form l+kq. Dirichlet’s theorem is a generalized statement about prime numbers and the theory of Fourier series on the finite abelian group (Z/qZ)∗ plays an important role in the solution.

متن کامل

Prime Numbers in Certain Arithmetic Progressions

We discuss to what extent Euclid’s elementary proof of the infinitude of primes can be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem). Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic number fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010